RADIATION FROM MIXTURE OF DIATOMIC VIBRATIONAL-
NONEQUILIBRIUM GASES WITH NONOVERLAPPING BANDS

V. M. Strel'chenya and Yu. V. Khodyko UDC 535.231.4

The integral and spectral characteristics of steady-state nonequilibrium radiation from a two-
component mixture of relaxing diatomic gases with nonoverlapping vibrational —rotational bands
are calculated in the diffusion approximation.

In order to calculate the radiation characteristics of nonequilibrium molecular gases, it is necessary to
solve a system of equations of the Boltzmann kind formolecules and photons [1], which is a quite difficult
mathematical problem. The problem becomes much more simple, however, when local equilibrium within in-
dividual degrees of freedom for the molecules can be achieved. Specifically, calculation of the optical charac-
teristics of a one-component diatomic gas with a vibrational temperature different than its translational and
rotational temperatures reduces to solution of an integrodifferential equation for the density of its vibrational
energy [2]. An analytical solution to this equation can generally not be obtained, but under certain assumptions
in the spatially homogeneous case it is possible to reduce the integrodifferential equation to a much simpler
differential equation of the diffusion kind [3] and solve the latter exactly [4].

In the case of a mixture of gases with a partial equilibrium, one can demonstrate that calculation of its
optical characteristics reduces to solution of a system of integrodifferential equations for the density of vibra-
tional energy in each component. Assuming that the additional requirements [3] are met, one can pass from
this system of equations to a system of equations which describe the transfer of radiation energy in the diffu-
slon approximation. ‘

In this approximation we will determine the characteristics of nonequilibrium radiation from a two-
component mixture of diatomic gases with nonoverlapping vibrational —rotational bands. We note that calcu-
lation of the radiation parameters of some polyatomic vibrational-nonequilibrium gases can also be reduced
to this problem. The problem under consideration here is linked directly to calculation of the optical charac-
teristics of a jet of hot molecular gases discharging into a rarefied space. Most important from the practical
standpoint is the 1000-2000°K temperature range, where the effects of anharmonicity remain insignificant,
but (unlike in problems encountered in laser physics) in this problem the radiation must be examined over the
entire vibrational —rotational band, its characteristics being determined by radiative transitions as well as by
vibration kinetics associated with intermolecular collisions.

Inasmuch as energy transfer occurs much faster within each groupof degrees of freedom which mole-
cules have than between different such groups, one can assume [5] that translational, rotational, and vibrational
degrees of freedom are characterized by Boltzmann distributions with temperatures T, Ty, and Ty, respec-
tively. Since translational —rotational (T —R) relaxation occurs much faster than vibrational —translational
(V—T) relaxation, moreover, one can let T=T;,. Assuming now that the gas density is sufficiently low and tem-
perature T is sufficiently high, one can disregard the effect of radiative energy transfer on the temperature
field in active degrees of freedom and regard them as given [4]. The radiation field distribution over the
volume occupied by the gas will then be related only to the distribution of the vibrational energy of the mix~
ture components, the latter distribution changing due to V—T relaxation and exchange of vibrational energy
between molecules of different components (V—V' relaxation) as well as due to emission and absorption of
radiation by molecules. Disregarding the anharmonicity of molecule vibrations, we can write the equations of
the diffusion approximation for the given case as
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describes the V—V' relaxation [5],
el = (exp 0; — 1)1, 0; = hvy,/kT, 1% = (ZQ)™*.

Here and henceforth the indices are i, k=1,2;j=3 —1i, and I =3 — k.

The nonlinearity due to radiation in the fundamental system of equations (1)-(4) vanishes in the "narrow
band" approximation [4]. For the purpose of linearizing the exchange term Ryyr, we expand the product g4¢,
into a power series in £{ — S({ (1=1, 2) and discard the last term, which quadratically decreases as the system
approaches its equilibrium state. Inserting this series expansion into expression (5) yields
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We now insert expression (6) into Egs. (1)-(2) and, considering that in the "narrow band" approximation
U, ~8mhvie;/c® and the vibrational —rotational bands of molecules do not overlap, i.e., k,,; = 0 within the interval
AVj, pass fromthe system of eguations (1)~(4) to a system oftwo differential equations which in the spatially
homogeneous case become
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In order to make the system completely determinate, it is necessary to supplement Eqgs, (7) with boundary con-
ditions based on the two-stream approximation [6]
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and also initial conditions. With the aid of Eqs. (1)~(4), condition (9) can be reduced to the form
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containing only &4.

In this study we will consider only the steady-state problem for a volume of gas with a simple geometry.
We will assume, for specificity, that the gas 1s contained in an infinitely long cylinder of radius R. For this
case the solution to the system of equations (7)~(10) is
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Coefficients Cii and oy are determined from the expressions
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Knowing &, one can easily calculate the integral densities of radiation energy in bands U; from the
equalities

wlU; = j by U dv.
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For this we integrate Eq. (4) over the i-th band, taking into account that the bands do not overlap and using the
approximate equality [4]
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Inserting the result into Egs. (1) and (2), we obtain
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With the aid of the boundary conditions (9}, we now determine the integral flux densities of energy within the
vibrational — rotational bands of molecules radiated from the cylindrical surface
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In order to determine the spectral characteristics of radiation, it is necessary first of all to solve the
equation

V2U g — 4w Uy — U3i) = 0 an
which follows from Eqgs. (3)-(4) and has the corresponding boundary condition
(n-y + 2k) Uyile = 0. 18)

It is noteworthy that the parameters which characterize V—T and V—V' r_élaxation of gases appear in Eq. (17)
expressed through the quantity Uv*i ~ gi(r).

208



Letting r =R in the solution to this equation and using the condition (9), we obtain the spectral density of
the energy flux within the i-th band radiated from the cylinder surface
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where % — Swiel/c%; iy = M2kt @3 Ry = 2kuR;  Cin=Ca(l—1)™". The quantities Ay and % are deter-
mined according to the procedure in study [3].

Integral and spectral characteristics of radiating volumes in the shape of a plane layer or a sphere can
be calculated in an analogous manner. It is easy to ascertain that the corresponding expressions for these cases
canbe derived from those for a cylinder by substitution of I (z) with cosh z, I, (z) with sinh z, Rwitha inthe case of a
planelayer of thickness 2« or of I)(z) with (sin z) /Z and I () with (z cosz —sin z)z~2 in the case of a sphere.

We will now discuss the results. First we note that the expressions for &4, Uy, Uy, Si» and S,,; appear
in the form of differences between two terms, the first one representing the value of a given quantity at thermo-
dynamic equilibrium and the second one accounting for the deviation of the vibrational temperatures Ty of
both components from the translational—rotational temperature T of the gas due to finiteness of the relaxation
rate and leakage of energy through the volume boundary. Upon introduction of the parameters ¢;(p) =1 — Uj(p )/
UO which characterize the amount of deviation of radiation energy density within the bands from equilibrium,
and with the use of equalities (14)-(15) one can demonstrate that ;> 0 and (d 1/dp)> 0, i.e., that the function
Usilp) < U and decreases as p increases. It then follows from the equalities
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based on expressions (11) and (13), that the mean vibrational energy of molecules in each component is also a
decreasing function of p, with si(p) <sg at any p regardless of the values of the parameters which character-
ize V—T and V—V' relaxation. With increasing p, correspondingly also decreases the vibrational temperature

of each component
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Let us determine how addition of molecules of component 2 affects the spectral density S, assuming that
Ny =const and N, increases from zero, in the practically interesting case of an optically thin gas volume. We
note that all time parameters 7 defined according to expressions (8) depend on N,, except T,;, and so does
No(My~Ny) [3]. For 71 we use the expression [5]

1) = (PulNy + PNo)™,

where P;y is proportional to the probability of one-quantum deactivation of a vibrationally excited molecule of
component i by an inelastic collision with a molecule of component k. When N, =0, then
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Calculations reveal that in the case of the inequality
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1
S; increases monotonically with increasing N, and tends to the limit S¥ * =Rw,S{, independent of N,. When Py, +
£ Py +P Py T*> PyiA, /A1, then inequality (20) holds true for any N;, In the opposite case this mequality holds
true only at sufficiently low values of Ny < N}, where Nf is the value of N, at which inequality (20) becomes an
equality. When N;> Nf, however, then §;, initially decreasing at N, equal to
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will now increase, tending to Sf* as N, increases further. We thus have S */81 >1 when A{R*« 1. Inequality
(20) with a given N, indicates, as can be easily ascertained, that addition of the second component increases the
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radiation intensity of the first component in the cases of a slow V—V' exchange, a low emissivity of component
2 molecules, or a fast excitation of vibrations of component 1 molecules by component 2 molecules. In these
cases addition of component 2 results first of all in a faster V—T relaxation in component 1, owing to an in-
crease of the gas density, while transfer of vibrational energy from this component to molecules of component
2 and its subsequent luminescence play a relatively minor role so that the additional energy entering the vibra-
tional degrees of freedom of component 1 molecules fromits translational and rotational degrees of freedom is
radiated out by molecules of this component.

We will now consider the special case where only one of the two diatomic gases, say gas 1, radiates and
A,=kyp,=0. Then t;=1 A=2xJai, Ae=0 and relations (12) for the coefficients Cjk lead to the indeterminacy
0/0. This can be easily explained, if one considers that the last term in Eq. (2) vanishes when ky, =0 and that
this reduces the order of the system of Eqgs. (17). As a consequence, one of the boundary conditions (10} (at
i=2) from which the coefficients Cik are determined becomes simple corollaries of the fundamental system of
equations. Instead of this boundary condition, therefore, it becomes necessary to use the equation
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which follows from Eq. (2). As a result, one can obtain Ci, =0 and
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while £,(r) is calculated according to Eq. (21). The form of expression (23) is analogous to that of the £(r) rela-
tion for a one-component diatomic gas [4], but the coefficients in expression (23) account for the change in the
rate of V—T relaxation in component 1 due to addition of component 2, for V—T relaxation in component 2, and
for V=V' relaxation. It can be easily demonstrated that in the presence of a nonradiating component 2 the mag-
nitude of g4(r} at any r will exceed the corresponding magnitude attained in a one-component gas and that, more-
over, £4(r) will increase as N, increases (with N;= const).

In another special case, where V—V' exchange occurs much slower than V—T relaxation and vibrations
are radiatively deactivated, expressions (11) and (12) for ¢; yield relations analogous to relation (23) with »;
replacing % and 1 +A;7i replacing the ratio 041/ @, (71 depending on the concentrations of both components).

It is noteworthy that the expressions obtained here for &4, Ui, Sy, and 8,5 retain their form also in the
case of a mixture of gases containing alongside two radiating components also monatomic gases (He, Ar) or
nonradiating diatomic gases (N,, O,, etc.). For the latter case, however, in the expressions for Cjj and Qjx
there appear additional terms which account for exchange of vibrational energy between radiating and non-
radiating components.

NOTATION

t, time; T, temperature of translational and rotational degrees of freedom of molecules; Ty, vibrational
temperature (i=1, 2 denotes the component number); Nj, concentration of respective molecules; vy, frequency of vibra-
tions; Avj, effective width of the respective vibrational —rotational band;e; and s"i, mean number of vibrational quanta in
amolecule and their mean number at equilibrium; 0 =hv/kT; kyi, respective absorption coefficient; Hj, respec-
tive effective band absorption coefficient; U, Ul’ji, and UJ;, spectral density of radiation energy and its equilib-
rium values at temperatures Tvi and T, respectively; S, spectral density of the radiation flux; U; and U(i),
integral density of radiation energy within the i-th band and its equilibrium value; §;, integral spectral density
of the radiation flux in the respective band; ’T(i), time of V- T relaxation; 7, Tiss 'r{", Tig, and Ai"l, time param-
eters characterizing respectively the rate of relaxation, the rate of vibrationa]1~energy exchange, and the rate
of radiative deactivation; ZNj, number of collisions between molecules of component j and molecules of com-
ponent i per unit time; Q, probability of a quantum of vibrational-energy exchange; Pij, a quantity proportional
to the probability of one-quantum deactivation of a vibrationally excited molecule i upon collision with molecule
j3s Ak, roots of the characteristic equation; Iy, modified Bessel function of order n; R, radius of a cylinder; r,
radial coordinate; n, unit vector normal outward to the surface bounding the gas volume; and c, velocity of light.
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PIEZOELECTRIC PULSE TRANSDUCER WITH MATCHED
AMPLIFIER FOR MEASUREMENT OF FAST VARYING PRESSURE

V. 1. Zagorel'skii, N. N. Stolovich, UDC 533.6.011.72
and N. A. Fomin

A piezoelectric transducer with an electronic matching circuit has been built and tested for
measuring the pressure behind a shock wave with a high time resolution. Here its construc-
tion is described and the test results are reported.

Intensive studies of shock waves have in recent years been stimulated by a tremendous interest in shock
wave dynamics in liquids and gases as well as in hypersonic gasdynamics, high-temperature thermophysics,
chemical kinetics, and magnetohydrodynamics. Many studies have dealt with the measurement of absolute
pressure and of pressure variation profiles behind a shock wave. In most of those studies the authors used
pressure gauges which they themselves had built. For such measurements one widely uses transducers where
an electric signal is produced by deformation of an elastic element like a piezoceramic one [1-10]. Piezo-
electric pressure transducers are wideband devices (with a high time resolution), inasmuch as deformations
of a few microns are sufficlent for polarizing the plezoelectric cell and, consequently, its inertia is not involved
with large displacements of the center of mass but determined by the time in which its steady state of strain
is reached.

These authors have developed and tested a pressure pulse transducer with a matching amplifier which
ensures a microsecond time resolution in measurements of fast varying pressures. The piezoelectric trans-
ducer includes a matched acoustic absorbing rod (waveguide), as has been proposed [1-3], for eliminating the
effect of the shock wave reflected by the faces of the piezoceramic cell. This transducer and the matching
amplifier are simple in construction and ensure a high time resolution.

The construction of the pressure gauge is shown schematically in Fig. 1. Cylindrical specimens of grade
TsTS~19 lead zirconate-titanate, 4 mm in diameter and 1 mm in wall thickness, were used here. One face of the
plezoceramic cell 2 is soldered with Wood metal to the cylindrical zinc waveguide 3 and the other face is fast-
ened with a thin conductor 8 to the brass case 1. With the aid of a rubber gasket 4 and a nut 5, waveguide 3
together with the piezoceramic cell 2 already soldered on and with conductors 6, 8 is inserted into and centered
in the case. The clearance space inside the case is filled with beeswax so that vibrations of the case will not
be recorded by the instrument. In order to minimize electric pickup, no window has been provided for solder-
ing the conductor 6 to the coaxial connector 7. Conductor 6 is grade LEShO enamelled single-silk 7 x 0.07nm
Lietz wire.
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